On Integral Operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Learning with Integral Operators

A large number of learning algorithms, for example, spectral clustering, kernel Principal Components Analysis and many manifold methods are based on estimating eigenvalues and eigenfunctions of operators defined by a similarity function or a kernel, given empirical data. Thus for the analysis of algorithms, it is an important problem to be able to assess the quality of such approximations. The ...

متن کامل

Integral operators

1 Product measures Let (X,A , μ) be a σ-finite measure space. Then with A ⊗ A the product σalgebra and μ ⊗ μ the product measure on A ⊗A , (X ×X,A ⊗A , μ⊗ μ) is itself a σ-finite measure space. Write Fx(y) = F (x, y) and F (x) = F (x, y). For any measurable space (X ′,A ′), it is a fact that if F : X×X → X ′ is measurable then Fx is measurable for each x ∈ X and F y is measurable for each y ∈ X...

متن کامل

IFS-Type Operators on Integral Transforms

Most standard fractal image compression techniques rely on using an IFS operator directly on the image function. Sometimes, however , it is more convenient to work on a faithful representation of the image which, in certain applications, may be a transformed version of the image. For example, if an MRI image is scanned in as frequency data it may be more natural to work on the Fourier transform...

متن کامل

Boundedness of Singular Integral Operators On

Eleonor Harboure Beairiz Viviani Presentado pOl" Carlos Segovia Abstract: We study the boundedness of singular integral operators on Orlicz-Hardy spaces H w , in the setting of spaces of homogeneous type. As an application of this result, we obtain a characterization of HwIRn in terms of the Riesz Transforms. § 1. NOTATION AND DEFINITIONS Let X be a set. A function d : X x X -+ IR+ U {OJ shall ...

متن کامل

A Note on Learning with Integral Operators

A large number of learning algorithms, for example, spectral clustering, kernel Principal Components Analysis and many manifold methods, are based on estimating eigenvalues and eigenfunctions of operators defined by a similarity function or a kernel, given empirical data. Thus for the analysis of algorithms, it is an important problem to be able to assess the quality of such approximations. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1999

ISSN: 0022-247X

DOI: 10.1006/jmaa.1999.6501